Rabu, 14 Oktober 2015

LANGKAH-LANGKAH MENYELESAIKAN INVERS MATRIKS ORDO 3X3

Cara Menyelesaikan Invers Matriks ordo 3x3  . Untuk Mendapatkan matriks unsur invers 3x3 kita perlu memahami matriks - matriks berikut :
  1. Matriks Kofaktor
  2. Adjoin
  3. Nilai elemen
  4. rumus invers Matriks ordo 3 x 3

Keterangan :


  • Matriks Kofaktor adalah matriks yang unsurnya diganti dengan nilai determinan yang unsurnya tidak sebaris dan tidak sekolom dengan unsur asal. Untuk tandanya digunakan tanda positif negatif saling bergantian.

invers matriks ordo 3x3 tanda


  • Adjoin adalah matriks kofaktor yang di Transposkan ( baris jadi kolom , kolom jadi baris )



Oke langsung ke contoh soal berikut ini :



Cara Mencari Invers Matriks ordo 3x3
Carilah Invers matriks dari A diatas !!

Langkah pertama maka kita harus mencari kofaktor dari A , dengan cara sbb:
kofaktor matriks ordo 3x3


Langkah kedua,  Setelah hasil dari Kofaktor A ditemukan , maka kita mencari ADJOIN nya = 
adjoin matriks ordo 3x3


Langkah ketiga , Mencari nilai determinan A :
determinan matriks ordo 3x3



Langkah terakhir adalah mencari invers matriks A dengan rumus :
Invers Matriks nxn = 1 / nilai determinan . Matriks Adjoinnya

jadi matriks invers A adalah =
Cara Mencari Invers Matriks ordo 3x3

PENYELESAIAN MATRIKS DETERMINAN ORDO 3X3

Ordo 3x3

  • Determinan dengan Ekspansi Kofaktor

Terbagi tiga jenis yaitu:
  • Dengan Minor dan Kofaktor
  • Dengan Ekspansi Kofaktor Pada Baris Pertama
  • Dengan Ekspansi Kofaktor Pada Kolom Pertama
  • Determinan dengan Minor dan kofaktor
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
 a_{31} & a_{32} & a_{33}\\
\end{bmatrix} tentukan determinan A
Pertama buat minor dari a11
M11 = \begin{bmatrix}
a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} = detM = a22a33 - a23a32
Kemudian kofaktor dari a11 adalah
c11 = (-1)1+1M11 = (-1)1+1a22a33 - a23a32
kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini
\begin{bmatrix}
+&-&+&-&+&\cdots\\
-&+&-&+&-&\cdots\\
+&-&+&-&+&\cdots\\
-&+&-&+&-&\cdots\\
\vdots&\vdots&\vdots&\vdots&\vdots& \\
\end{bmatrix}
Begitu juga dengan minor dari a32
M32 = \begin{bmatrix}
a_{11} & a_{13}\\
a_{21} & a_{23}\\
\end{bmatrix} = detM = a11a23 - a13a21
Maka kofaktor dari a32 adalah
c32 = (-1)3+2M32 = (-1)3+2 x a11a23 - a13a21
Secara keseluruhan, definisi determinan ordo 3x3 adalah
det(A) = a11C11+a12C12+a13C13
Contoh Soal:
A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode Minor dan kofaktor
Jawab:
c11 = (-1)1+1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} = 1 (-3) = -3
c12 = (-1)1+2\begin{bmatrix} 4 & 4\\3 & 1\\ \end{bmatrix} = -1 (-8) = 8
c13 = (-1)1+3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1 (-7) = -7
det(A) = 1 (-3) + 2 (8) + 3 (-7) = -8
  • Determinan dengan Ekspansi Kofaktor Pada Baris Pertama
Misalkan ada sebuah matriks A3x3
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{bmatrix}
maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,
det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} - a12\begin{bmatrix}a_{21} & a_{23}\\
a_{31} & a_{33}\\
\end{bmatrix} + a13\begin{bmatrix}a_{21} & a_{22}\\
a_{31} & a_{32}\\
\end{bmatrix}
= a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32
Contoh Soal:
A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor baris pertama
Jawab:
det(A) = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 2\begin{bmatrix} 4 & 4\\ 3 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1(-3) - 2(-8) + 3(-7) = -8
  • Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama
Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.
Misalkan ada sebuah matriks A3x3
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{bmatrix}
maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,
det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} - a21\begin{bmatrix}a_{21} & a_{23}\\
a_{31} & a_{33}\\
\end{bmatrix} + a31\begin{bmatrix}a_{21} & a_{22}\\
a_{31} & a_{32}\\
\end{bmatrix}
= a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32
Contoh Soal:
A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor kolom pertama
Jawab:
det(A) = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 4\begin{bmatrix} 2 & 3\\ 2 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 2 & 3\\5 & 4\\ \end{bmatrix} = 1(-3) - 4(-4) + 3(-7) = -8
  • Metode Sarrus

A = \begin{bmatrix}     
a & b & c\\
d & e & f\\
g & h & i\\ 
\end{bmatrix} tentukan determinan A
untuk mencari determinan matrik A maka,
detA = (aei + bfg + cdh) - (bdi + afh + ceg)
Contoh Soal:
A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode sarrus
Jawab:
det(A) = \begin{bmatrix}
1 & 2 & 3 & 1 & 2\\
4 & 5 & 4 & 4 & 5\\
3 & 2 & 1 & 3 & 2\\
\end{bmatrix} = (1x5x1 + 2x4x3 + 3x4x2) - (3x5x3 + 2x4x1 + 1x4x2) = 53 - 61 = -8

PENGENALAN MATRIKS

PENGERTAN DAN JENIS-JENIS MATRIKS
  • Pengertian Martiks
Matriks adalah kumpulan bilangan yang disusun dalam bentuk baris dan kolom. Bilangan yang tersusun dalam baris dan kolom disebut elemen matriks. Nama matriks ditulis dengan menggunakan huruf kapital.
Banyaknya baris dan kolom matriks disebut ordo matriks.
Bentuk umum:
  • Jenis-jenis Matriks
  1. Matriks baris adalah matriks yang hanya memiliki satu baris. Contoh :  A = [ 2  3  0  7 ]
  2. Matriks kolom adalah matriks yang hanya memiliki satu kolom. Contoh : a (2)
  3. Matriks persegi adalah matriks yang jumlah kolomnya sama. Contoh:a (3)
  4. Matriks Identitas adalah matriks persegi yang elemen-elemen pada diagonal utamanya1, sedangkan semua elemen yang lainnya nol. Contoh:a (4)
  5. Matriks Segitiga Atas adalah matriks persegi yang elemen-elemen dibawah diagonal utamanya nol.                              Contoh: a (5)
  6. Matriks Segitiga Bawah adalah matriks persegi yang elemen-elemen diatas diagonal utamanya nol.                              Contoh:
  7. a (6)  Matriks Nol adalah matriks yang semua elemennya nol. Contoh: a (8)
  • Operasi Pada Matriks
Pada matriks dikenal beberapa jenis operasi seperti penjumlahan, pengurangan, dan perkalian. Dalam masing-masing operasi tersebut punya karakteristik sendiri-sendiri. Berikut selengkapnya:
    1. penjumlahan Matriks
Penjumlahan matriks hanya dapat dilakukan terhadap matriks-matriks yang mempunyai ukuran (orde) yang sama. Jika A=(aij) dan B=(bij) adalah matriks-matriks berukuran sama, maka A+B adalah suatu matriks C=(cij) dimana (cij) = (aij)+(bij) atau [A]+[B] = [C] mempunyai ukuran yang sama dan elemennya (cij) = (aij) + (bij)
Contoh:
Penjumlahan matriks
A+C tidak terdefinisi (tidak dapat dicari hasilnya) karena matriks A dan matriks B mempunyai ukuran yang berbeda
  2. Pengurangan Matriks
Sama seperti pada penjumlahan matriks, pengurangan matriks hanya dapat dilakukan pada matriks-matriks yang mempunyai ukuran yang sama. Jika ukurannya berbeda maka matriks hasil tidak terdefinisikan.
Contoh:
Pengurangan matriks
 3. Perkalian Matriks dengan Skalar
Jika k adalah suatu bilangan skalar dan A=(aij) maka matriks kA(kaij) yaitu suatu matriks kA yang diperoleh dengan mengalikan semua elemen matriks A dengan k. Mengalikan matriks dengan skalar dapat dituliskan di depan atau dibelakang matriks. Misalnya [C]=k[A]=[A]k dan (cij ) = (kaij )
Pada perkalian matriks dengan skalar berlaku hukum distributif dimana k(A+B)=kA+kB
Contoh: perkalian matriks dg skalar
 4. Perkalian Matriks dengan Matriks
Beberapa hal yang harus diperhatikan:
  1. Perkalian matriks dengan matriks umumnya tidak komutatif
  2. Syarat perkalian adalah jumlah banyaknya kolom pertama matriks sama dengan jumlah banyaknya baris matriks kedua
  3. Jika matriks A berukuran mxp dan matriks pxn maka perkalian A*B adalah suatu matriks C=(cij) berukuran mxn dimana
Contoh:
perkalian matriks dg matriks
5. Transpose Matriks
Transpose dari suatu matriks merupakan pengubahan baris menjadi kolom dan kolom menjadi baris. Transpos dari matrik A dinotasikan AT. Jadi mirip transpose yang ada di excel. Jika sebuah matriks berordo 3 x 4 ketika ditransporse akan menjadi matriks berorde 4 x 3. contoh:  contoh-transpose-matriks
Dalam matriks dikenal istilah matriks simetri, yaitu matriks yang ketika ditranspose sama dengan sebelum ditranspos. Contoh:
matriks-simetri
Karena A = At maka A disebut matriks simetri.
    6. Determinan Matriks
Setiap matriks bujur sangkar mempunyai nilai determinan. Nilai determinan dari suatu matriks merupakan suatu skalar. Jika nilai determinan suatu matriks sama dengan nol, maka matrik tersebut disebut matriks singular. Matriks singular tidak mempunyai invers/ balikan.
2
Determinan dari matriks-matriks khusus:
                                                                                (a)  Matriks Diagonal
deteriminan-1
(b) Matriks Segitiga Atas
2014-07-24_2147521
(c) Matriks Segitiga Bawah
2014-07-24_214809
 7. Invers Matriks
Invers hanya dipunyai oleh matriks yang  tidak singuler. Invers matriks A dinyatakan dengan A-1 dan secara umum dirumuskan:
kuliah1-matriks-matematika-ekonomi-i-20-638